27 research outputs found

    Theory of the asynchronous state of structured rotator networks and its application to recurrent networks of excitatory and inhibitory units

    Full text link
    Recurrently coupled oscillators that are sufficiently heterogeneous and/or randomly coupled can show an asynchronous activity in which there are no significant correlations among the units of the network. The asynchronous state can nevertheless exhibit a rich temporal correlation statistics, that is generally difficult to capture theoretically. For randomly coupled rotator networks, it is possible to derive differential equations that determine the autocorrelation functions of the network noise and of the single elements in the network. So far, the theory has been restricted to statistically homogeneous networks, making it difficult to apply this framework to real-world networks, which are structured with respect to the properties of the single units and their connectivity. A particularly striking case are neural networks for which one has to distinguish between excitatory and inhibitory neurons, which drive their target neurons towards or away from firing threshold. To take into account network structures like that, here we extend the theory for rotator networks to the case of multiple populations. Specifically, we derive a system of differential equations that govern the self-consistent autocorrelation functions of the network fluctuations in the respective populations. We then apply this general theory to the special but important case of recurrent networks of excitatory and inhibitory units in the balanced case and compare our theory to numerical simulations. We inspect the effect of the network structure on the noise statistics by comparing our results to the case of an equivalent homogeneous network devoid of internal structure. Our results show that structured connectivity and heterogeneity of the oscillator type can both enhance or reduce the overall strength of the generated network noise and shape its temporal correlations.Comment: 11 pages, 4 figure

    Border forces and friction control epithelial closure dynamics

    Get PDF
    Epithelization, the process whereby an epithelium covers a cell-free surface, is not only central to wound healing but also pivotal in embryonic morphogenesis, regeneration, and cancer. In the context of wound healing, the epithelization mechanisms differ depending on the sizes and geometries of the wounds as well as on the cell type while a unified theoretical decription is still lacking. Here, we used a barrier-based protocol that allows for making large arrays of well-controlled circular model wounds within an epithelium at confluence, without injuring any cells. We propose a physical model that takes into account border forces, friction with the substrate, and tissue rheology. Despite the presence of a contractile actomyosin cable at the periphery of the wound, epithelization was mostly driven by border protrusive activity. Closure dynamics was quantified by an epithelization coefficient D=σp/ξD = \sigma_p/\xi defined as the ratio of the border protrusive stress σp\sigma_p to the friction coefficient ξ\xi between epithelium and substrate. The same assay and model showed a high sensitivity to the RasV12 mutation on human epithelial cells, demonstrating the general applicability of the approach and its potential to quantitatively characterize metastatic transformations.Comment: 44 pages, 17 figure

    Mechanics of Growing Tissues: A Continuum Description Approach

    Get PDF
    During development, higher organisms grow from a single fertilized egg cell to the adult animal. The many processes that lead to the eventual shape of the developed organism are subsumed as morphogenesis, which notably involves the growth of tissues by repeated rounds of cell division. Whereas coordinated tissue growth is a prerequisite for animal development, excessive cell division in adult animals is the key ingredient to cancer. In this thesis, we investigate the collective organization of cells by cell division and cell death. The multicellular dynamics of growing tissues is influenced by mechanical conditions and can give rise to cell rearrangements and movements. We develop a continuum description of tissue dynamics, which describes the stress distribution and the cell flow field on large scales. Cell division and apoptosis introduce stress sources that, in general, are anisotropic. By combining cell number balance with dynamic equations for the stress source, we show that the tissue effectively behaves as a viscoelastic fluid with a relaxation time set by the rates of division and apoptosis. If the tissue is confined in a fixed volume, it reaches a homeostatic state in which division and apoptosis balance. In this state, cells undergo a diffusive random motion driven by the stochasticity of division and apoptosis. We calculate the effective diffusion coefficient as a function of the tissue parameters and compare our results concerning both diffusion and viscosity to simulations of multicellular systems. Introducing a second material component that accounts for the extracellular fluid, we show that a finite permeability of the tissue gives rise to additional mechanical effects. In the limit of long times, the mechanical response of the tissue to external perturbations is confined to a region of which the size depends on the ratio of tissue viscosity and cell-fluid friction. The two-component description furthermore allows to clearly distinguish the different contributions to the isotropic part of the mechanical stress, i.e., the fluid pressure and the stress exerted by cells. Last but not least, we study the propagation of an interface between two different cell populations within a tissue driven by differences in the mechanical control of the rates of cell division and apoptosis. Combining simple analytical limits and numerical simulations, we distinguish two different modes of propagation of the more proliferative population: a diffusive regime in which relative fluxes dominate the expansion, and a propulsive regime in which the proliferation gives rise to dominating convective flows.Die Entwicklung höherer Organismen beginnt mit einer einzelnen befruchteten Eizelle und endet beim erwachsenen Tier. Die vielen Prozesse, die zur endgültigen Form des entwickelten Organismus führen, werden als Morphogenese zusammengefasst; diese umfasst insbesondere das Wachstum von Geweben durch wiederholte Zellteilungszyklen. Während koordiniertes Gewebewachstum eine Voraussetzung normaler Entwicklung ist, führt übermäßige, unkontrollierte Zellteilung letztlich zu Krebs. In dieser Arbeit untersuchen wir den Einfluss von Zellteilung und Zelltod auf die Organisation von Zellen in Geweben. Die Dynamik wachsender Gewebe wird durch mechanische Bedingungen beeinflusst, die u.a.~Anlass zu Zellbewegungen sein können. Wir entwickeln eine Kontinuumsbeschreibung der Gewebedynamik, die die mechanischen Spannungen und das Zellströmungsfeld auf großen Skalen beschreibt. Zellteilung und Apoptose wirken als Spannungsquellen, die in der Regel anisotrop sind. Indem wir die Erhaltungsgleichung für die Zellanzahldichte mit dynamischen Gleichungen für die Spannungsquellen kombinieren, zeigen wir, dass sich das Gewebe effektiv wie eine viskoelastische Flüssigkeit verhält, deren Relaxationszeit von Zellteilungs- und Apoptose-Raten abhängt. Wenn das Gewebe in einem gegebenen Volumen eingeschlossen ist, erreicht es einen homöostatischen Zustand, in dem Zellteilung und der Apoptose im Gleichgewicht sind. In diesem Zustand unterliegen die Zellen einer diffusiven Bewegung aufgrund der Stochastizität von Zellteilung und Apoptose. Wir berechnen den effektiven Diffusionskoeffizienten als Funktion der Gewebeparameter und vergleichen unsere Ergebnisse sowohl hinsichtlich der Diffusion und als auch der Viskosität mit numerischen Simulationen solcher vielzelliger Systeme. Die Berücksichtigung der extrazellulären Flüssigkeit als einer zweiten Materialkomponente erlaubt uns zu zeigen, dass eine endliche Permeabilität des Gewebes zusätzliche mechanische Effekte bedingt. Auf langer Zeitskalen bleibt die mechanische Reaktion des Gewebes auf externe Störungen auf einen Bereich beschränkt, dessen Größe vom Verhältnis der Gewebeviskosität zum Permeabilitätskoeffizienten abhängt. Die Zweikomponenten-Beschreibung erlaubt darüber hinaus eine klare Unterscheidung der verschiedenen Beiträge zum isotropen Teil der mechanischen Spannung, d.h., des hydrodynamischen und des von Zellen ausgeübten Drucks. Zuletzt untersuchen wir die Dynamik einer Grenzfläche zwischen zwei verschiedenen Zellpopulationen innerhalb eines Gewebes, die durch Unterschiede in der mechanischen Kontrolle der effektiven Zellteilungsraten angetrieben wird. Mithilfe der Kombination einfacher analytischer Grenzfälle und numerischer Simulationen zeigen wir, dass zwei unterschiedliche Ausbreitungsmodi unterschieden werden können: ein diffusives Regime, in dem relative Flüsse die Expansion der stärker wachsenden Zellpopulation dominieren, sowie ein Regime, in dem die Grenzfläche durch konvektive Strömungen angetrieben wird.Les organismes supérieurs se développent à partir d\'une seule cellule fécondée jusqu\'à l\'animal adulte. Les nombreux processus qui conduisent à la forme finale de l\'organisme sont connus sous le nom de morphogenèse, qui comprend notamment la croissance des tissus par des cycles répétés de division cellulaire. Alors que la croissance coordonnée des tissus est une condition nécessaire au développement des animaux, la division cellulaire excessive chez les animaux adultes est l\'ingrédient clé du cancer. Dans cette thèse, nous étudions l\'organisation collective des cellules par division et mort cellulaire. La dynamique multicellulaire des tissus en croissance est influencée par des conditions mécaniques et peut donner lieu à des réarrangements ainsi qu\'à des mouvements cellulaires. Nous élaborons une description continue de la dynamique des tissus qui décrit la distribution des contraintes et le champ d\'écoulement des cellules sur de grandes échelles. La division cellulaire et l\'apoptose introduisent des sources de contraintes qui, en général, sont anisotropes. En combinant l\'équation de conservation du nombre de cellules avec des équations dynamiques des sources de contraintes, nous montrons que le tissu se comporte de manière effective comme un fluide viscoélastique avec un temps de relaxation fixé par les taux de division et d\'apoptose. Si le tissu est confiné dans un volume donné, il atteint un état homéostatique dans lequel division et apoptose s\'équilibrent. Dans cet état, les cellules subissent un mouvement diffusif aléatoire dû à la stochasticité de la division et de l\'apoptose. Nous calculons le coefficient de diffusion effectif en fonction des paramètres du tissu et comparons nos résultats concernant à la fois la diffusion et la viscosité à des simulations numériques de tels systèmes multicellulaires. En introduisant un deuxième composant qui représente le liquide extracellulaire, nous montrons qu\'une perméabilité finie du tissu donne lieu à des effets mécaniques supplémentaires. Dans la limite des temps longs, la réponse mécanique du tissu à des perturbations extérieures est confinée à une région dont la taille dépend du rapport entre la viscosité tissulaire et le coefficient de frottement entre les cellules et le liquide extracellulaire. La description à deux composants permet en outre de distinguer clairement les différentes contributions à la partie isotrope de la contrainte mécanique, c\'est-à-dire la pression du fluide et la contrainte exercée par les cellules. Finalement, nous étudions la propagation d\'une interface entre deux populations de cellules différentes, due à des différences dans le contrôle mécanique des taux de division et de mort cellulaire. En combinant de simples limites analytiques et des simulations numériques, nous distinguons deux modes de propagation différents de la population cellulaire la plus proliférante : un régime diffusif dans lequel les flux relatifs dominent l\'expansion, et un régime de propulsion dans lequel la prolifération domine et entraine des flux convectifs

    A model of membrane deformations driven by a surface pH gradient

    Full text link
    Many cellular organelles are membrane-bound structures with complex membrane composition and shape. Their shapes have been observed to depend on the metabolic state of the organelle, and the mechanisms that couple biochemical pathways and membrane shape are still actively investigated. Here, we study a model coupling inhomogeneities in the lipid composition and membrane geometry via a generalized Helfrich free energy. We derive the resulting stress tensor, the Green's function for a tubular membrane and compute the phase diagram of the induced deformations. We then apply this model to study the deformation of mitochondria cristae described as membrane tubes supporting a pH gradient at its surface. This gradient in turn controls the lipid composition of the membrane via the protonation/deprotonation of cardiolipins, which are acid-based lipids known to be crucial for mitochondria shape and functioning. Our model predicts the appearance of tube deformations resembling the observed shape changes of cristea when submitted to a proton gradient.Comment: 10 pages, 3 figure

    Mechanics of Growing Tissues: A Continuum Description Approach

    Get PDF
    During development, higher organisms grow from a single fertilized egg cell to the adult animal. The many processes that lead to the eventual shape of the developed organism are subsumed as morphogenesis, which notably involves the growth of tissues by repeated rounds of cell division. Whereas coordinated tissue growth is a prerequisite for animal development, excessive cell division in adult animals is the key ingredient to cancer. In this thesis, we investigate the collective organization of cells by cell division and cell death. The multicellular dynamics of growing tissues is influenced by mechanical conditions and can give rise to cell rearrangements and movements. We develop a continuum description of tissue dynamics, which describes the stress distribution and the cell flow field on large scales. Cell division and apoptosis introduce stress sources that, in general, are anisotropic. By combining cell number balance with dynamic equations for the stress source, we show that the tissue effectively behaves as a viscoelastic fluid with a relaxation time set by the rates of division and apoptosis. If the tissue is confined in a fixed volume, it reaches a homeostatic state in which division and apoptosis balance. In this state, cells undergo a diffusive random motion driven by the stochasticity of division and apoptosis. We calculate the effective diffusion coefficient as a function of the tissue parameters and compare our results concerning both diffusion and viscosity to simulations of multicellular systems. Introducing a second material component that accounts for the extracellular fluid, we show that a finite permeability of the tissue gives rise to additional mechanical effects. In the limit of long times, the mechanical response of the tissue to external perturbations is confined to a region of which the size depends on the ratio of tissue viscosity and cell-fluid friction. The two-component description furthermore allows to clearly distinguish the different contributions to the isotropic part of the mechanical stress, i.e., the fluid pressure and the stress exerted by cells. Last but not least, we study the propagation of an interface between two different cell populations within a tissue driven by differences in the mechanical control of the rates of cell division and apoptosis. Combining simple analytical limits and numerical simulations, we distinguish two different modes of propagation of the more proliferative population: a diffusive regime in which relative fluxes dominate the expansion, and a propulsive regime in which the proliferation gives rise to dominating convective flows.Die Entwicklung höherer Organismen beginnt mit einer einzelnen befruchteten Eizelle und endet beim erwachsenen Tier. Die vielen Prozesse, die zur endgültigen Form des entwickelten Organismus führen, werden als Morphogenese zusammengefasst; diese umfasst insbesondere das Wachstum von Geweben durch wiederholte Zellteilungszyklen. Während koordiniertes Gewebewachstum eine Voraussetzung normaler Entwicklung ist, führt übermäßige, unkontrollierte Zellteilung letztlich zu Krebs. In dieser Arbeit untersuchen wir den Einfluss von Zellteilung und Zelltod auf die Organisation von Zellen in Geweben. Die Dynamik wachsender Gewebe wird durch mechanische Bedingungen beeinflusst, die u.a.~Anlass zu Zellbewegungen sein können. Wir entwickeln eine Kontinuumsbeschreibung der Gewebedynamik, die die mechanischen Spannungen und das Zellströmungsfeld auf großen Skalen beschreibt. Zellteilung und Apoptose wirken als Spannungsquellen, die in der Regel anisotrop sind. Indem wir die Erhaltungsgleichung für die Zellanzahldichte mit dynamischen Gleichungen für die Spannungsquellen kombinieren, zeigen wir, dass sich das Gewebe effektiv wie eine viskoelastische Flüssigkeit verhält, deren Relaxationszeit von Zellteilungs- und Apoptose-Raten abhängt. Wenn das Gewebe in einem gegebenen Volumen eingeschlossen ist, erreicht es einen homöostatischen Zustand, in dem Zellteilung und der Apoptose im Gleichgewicht sind. In diesem Zustand unterliegen die Zellen einer diffusiven Bewegung aufgrund der Stochastizität von Zellteilung und Apoptose. Wir berechnen den effektiven Diffusionskoeffizienten als Funktion der Gewebeparameter und vergleichen unsere Ergebnisse sowohl hinsichtlich der Diffusion und als auch der Viskosität mit numerischen Simulationen solcher vielzelliger Systeme. Die Berücksichtigung der extrazellulären Flüssigkeit als einer zweiten Materialkomponente erlaubt uns zu zeigen, dass eine endliche Permeabilität des Gewebes zusätzliche mechanische Effekte bedingt. Auf langer Zeitskalen bleibt die mechanische Reaktion des Gewebes auf externe Störungen auf einen Bereich beschränkt, dessen Größe vom Verhältnis der Gewebeviskosität zum Permeabilitätskoeffizienten abhängt. Die Zweikomponenten-Beschreibung erlaubt darüber hinaus eine klare Unterscheidung der verschiedenen Beiträge zum isotropen Teil der mechanischen Spannung, d.h., des hydrodynamischen und des von Zellen ausgeübten Drucks. Zuletzt untersuchen wir die Dynamik einer Grenzfläche zwischen zwei verschiedenen Zellpopulationen innerhalb eines Gewebes, die durch Unterschiede in der mechanischen Kontrolle der effektiven Zellteilungsraten angetrieben wird. Mithilfe der Kombination einfacher analytischer Grenzfälle und numerischer Simulationen zeigen wir, dass zwei unterschiedliche Ausbreitungsmodi unterschieden werden können: ein diffusives Regime, in dem relative Flüsse die Expansion der stärker wachsenden Zellpopulation dominieren, sowie ein Regime, in dem die Grenzfläche durch konvektive Strömungen angetrieben wird.Les organismes supérieurs se développent à partir d\'une seule cellule fécondée jusqu\'à l\'animal adulte. Les nombreux processus qui conduisent à la forme finale de l\'organisme sont connus sous le nom de morphogenèse, qui comprend notamment la croissance des tissus par des cycles répétés de division cellulaire. Alors que la croissance coordonnée des tissus est une condition nécessaire au développement des animaux, la division cellulaire excessive chez les animaux adultes est l\'ingrédient clé du cancer. Dans cette thèse, nous étudions l\'organisation collective des cellules par division et mort cellulaire. La dynamique multicellulaire des tissus en croissance est influencée par des conditions mécaniques et peut donner lieu à des réarrangements ainsi qu\'à des mouvements cellulaires. Nous élaborons une description continue de la dynamique des tissus qui décrit la distribution des contraintes et le champ d\'écoulement des cellules sur de grandes échelles. La division cellulaire et l\'apoptose introduisent des sources de contraintes qui, en général, sont anisotropes. En combinant l\'équation de conservation du nombre de cellules avec des équations dynamiques des sources de contraintes, nous montrons que le tissu se comporte de manière effective comme un fluide viscoélastique avec un temps de relaxation fixé par les taux de division et d\'apoptose. Si le tissu est confiné dans un volume donné, il atteint un état homéostatique dans lequel division et apoptose s\'équilibrent. Dans cet état, les cellules subissent un mouvement diffusif aléatoire dû à la stochasticité de la division et de l\'apoptose. Nous calculons le coefficient de diffusion effectif en fonction des paramètres du tissu et comparons nos résultats concernant à la fois la diffusion et la viscosité à des simulations numériques de tels systèmes multicellulaires. En introduisant un deuxième composant qui représente le liquide extracellulaire, nous montrons qu\'une perméabilité finie du tissu donne lieu à des effets mécaniques supplémentaires. Dans la limite des temps longs, la réponse mécanique du tissu à des perturbations extérieures est confinée à une région dont la taille dépend du rapport entre la viscosité tissulaire et le coefficient de frottement entre les cellules et le liquide extracellulaire. La description à deux composants permet en outre de distinguer clairement les différentes contributions à la partie isotrope de la contrainte mécanique, c\'est-à-dire la pression du fluide et la contrainte exercée par les cellules. Finalement, nous étudions la propagation d\'une interface entre deux populations de cellules différentes, due à des différences dans le contrôle mécanique des taux de division et de mort cellulaire. En combinant de simples limites analytiques et des simulations numériques, nous distinguons deux modes de propagation différents de la population cellulaire la plus proliférante : un régime diffusif dans lequel les flux relatifs dominent l\'expansion, et un régime de propulsion dans lequel la prolifération domine et entraine des flux convectifs

    Mechanics of Growing Tissues: A Continuum Description Approach

    No full text
    During development, higher organisms grow from a single fertilized egg cell to the adult animal. The many processes that lead to the eventual shape of the developed organism are subsumed as morphogenesis, which notably involves the growth of tissues by repeated rounds of cell division. Whereas coordinated tissue growth is a prerequisite for animal development, excessive cell division in adult animals is the key ingredient to cancer. In this thesis, we investigate the collective organization of cells by cell division and cell death. The multicellular dynamics of growing tissues is influenced by mechanical conditions and can give rise to cell rearrangements and movements. We develop a continuum description of tissue dynamics, which describes the stress distribution and the cell flow field on large scales. Cell division and apoptosis introduce stress sources that, in general, are anisotropic. By combining cell number balance with dynamic equations for the stress source, we show that the tissue effectively behaves as a viscoelastic fluid with a relaxation time set by the rates of division and apoptosis. If the tissue is confined in a fixed volume, it reaches a homeostatic state in which division and apoptosis balance. In this state, cells undergo a diffusive random motion driven by the stochasticity of division and apoptosis. We calculate the effective diffusion coefficient as a function of the tissue parameters and compare our results concerning both diffusion and viscosity to simulations of multicellular systems. Introducing a second material component that accounts for the extracellular fluid, we show that a finite permeability of the tissue gives rise to additional mechanical effects. In the limit of long times, the mechanical response of the tissue to external perturbations is confined to a region of which the size depends on the ratio of tissue viscosity and cell-fluid friction. The two-component description furthermore allows to clearly distinguish the different contributions to the isotropic part of the mechanical stress, i.e., the fluid pressure and the stress exerted by cells. Last but not least, we study the propagation of an interface between two different cell populations within a tissue driven by differences in the mechanical control of the rates of cell division and apoptosis. Combining simple analytical limits and numerical simulations, we distinguish two different modes of propagation of the more proliferative population: a diffusive regime in which relative fluxes dominate the expansion, and a propulsive regime in which the proliferation gives rise to dominating convective flows.Die Entwicklung höherer Organismen beginnt mit einer einzelnen befruchteten Eizelle und endet beim erwachsenen Tier. Die vielen Prozesse, die zur endgültigen Form des entwickelten Organismus führen, werden als Morphogenese zusammengefasst; diese umfasst insbesondere das Wachstum von Geweben durch wiederholte Zellteilungszyklen. Während koordiniertes Gewebewachstum eine Voraussetzung normaler Entwicklung ist, führt übermäßige, unkontrollierte Zellteilung letztlich zu Krebs. In dieser Arbeit untersuchen wir den Einfluss von Zellteilung und Zelltod auf die Organisation von Zellen in Geweben. Die Dynamik wachsender Gewebe wird durch mechanische Bedingungen beeinflusst, die u.a.~Anlass zu Zellbewegungen sein können. Wir entwickeln eine Kontinuumsbeschreibung der Gewebedynamik, die die mechanischen Spannungen und das Zellströmungsfeld auf großen Skalen beschreibt. Zellteilung und Apoptose wirken als Spannungsquellen, die in der Regel anisotrop sind. Indem wir die Erhaltungsgleichung für die Zellanzahldichte mit dynamischen Gleichungen für die Spannungsquellen kombinieren, zeigen wir, dass sich das Gewebe effektiv wie eine viskoelastische Flüssigkeit verhält, deren Relaxationszeit von Zellteilungs- und Apoptose-Raten abhängt. Wenn das Gewebe in einem gegebenen Volumen eingeschlossen ist, erreicht es einen homöostatischen Zustand, in dem Zellteilung und der Apoptose im Gleichgewicht sind. In diesem Zustand unterliegen die Zellen einer diffusiven Bewegung aufgrund der Stochastizität von Zellteilung und Apoptose. Wir berechnen den effektiven Diffusionskoeffizienten als Funktion der Gewebeparameter und vergleichen unsere Ergebnisse sowohl hinsichtlich der Diffusion und als auch der Viskosität mit numerischen Simulationen solcher vielzelliger Systeme. Die Berücksichtigung der extrazellulären Flüssigkeit als einer zweiten Materialkomponente erlaubt uns zu zeigen, dass eine endliche Permeabilität des Gewebes zusätzliche mechanische Effekte bedingt. Auf langer Zeitskalen bleibt die mechanische Reaktion des Gewebes auf externe Störungen auf einen Bereich beschränkt, dessen Größe vom Verhältnis der Gewebeviskosität zum Permeabilitätskoeffizienten abhängt. Die Zweikomponenten-Beschreibung erlaubt darüber hinaus eine klare Unterscheidung der verschiedenen Beiträge zum isotropen Teil der mechanischen Spannung, d.h., des hydrodynamischen und des von Zellen ausgeübten Drucks. Zuletzt untersuchen wir die Dynamik einer Grenzfläche zwischen zwei verschiedenen Zellpopulationen innerhalb eines Gewebes, die durch Unterschiede in der mechanischen Kontrolle der effektiven Zellteilungsraten angetrieben wird. Mithilfe der Kombination einfacher analytischer Grenzfälle und numerischer Simulationen zeigen wir, dass zwei unterschiedliche Ausbreitungsmodi unterschieden werden können: ein diffusives Regime, in dem relative Flüsse die Expansion der stärker wachsenden Zellpopulation dominieren, sowie ein Regime, in dem die Grenzfläche durch konvektive Strömungen angetrieben wird.Les organismes supérieurs se développent à partir d\'une seule cellule fécondée jusqu\'à l\'animal adulte. Les nombreux processus qui conduisent à la forme finale de l\'organisme sont connus sous le nom de morphogenèse, qui comprend notamment la croissance des tissus par des cycles répétés de division cellulaire. Alors que la croissance coordonnée des tissus est une condition nécessaire au développement des animaux, la division cellulaire excessive chez les animaux adultes est l\'ingrédient clé du cancer. Dans cette thèse, nous étudions l\'organisation collective des cellules par division et mort cellulaire. La dynamique multicellulaire des tissus en croissance est influencée par des conditions mécaniques et peut donner lieu à des réarrangements ainsi qu\'à des mouvements cellulaires. Nous élaborons une description continue de la dynamique des tissus qui décrit la distribution des contraintes et le champ d\'écoulement des cellules sur de grandes échelles. La division cellulaire et l\'apoptose introduisent des sources de contraintes qui, en général, sont anisotropes. En combinant l\'équation de conservation du nombre de cellules avec des équations dynamiques des sources de contraintes, nous montrons que le tissu se comporte de manière effective comme un fluide viscoélastique avec un temps de relaxation fixé par les taux de division et d\'apoptose. Si le tissu est confiné dans un volume donné, il atteint un état homéostatique dans lequel division et apoptose s\'équilibrent. Dans cet état, les cellules subissent un mouvement diffusif aléatoire dû à la stochasticité de la division et de l\'apoptose. Nous calculons le coefficient de diffusion effectif en fonction des paramètres du tissu et comparons nos résultats concernant à la fois la diffusion et la viscosité à des simulations numériques de tels systèmes multicellulaires. En introduisant un deuxième composant qui représente le liquide extracellulaire, nous montrons qu\'une perméabilité finie du tissu donne lieu à des effets mécaniques supplémentaires. Dans la limite des temps longs, la réponse mécanique du tissu à des perturbations extérieures est confinée à une région dont la taille dépend du rapport entre la viscosité tissulaire et le coefficient de frottement entre les cellules et le liquide extracellulaire. La description à deux composants permet en outre de distinguer clairement les différentes contributions à la partie isotrope de la contrainte mécanique, c\'est-à-dire la pression du fluide et la contrainte exercée par les cellules. Finalement, nous étudions la propagation d\'une interface entre deux populations de cellules différentes, due à des différences dans le contrôle mécanique des taux de division et de mort cellulaire. En combinant de simples limites analytiques et des simulations numériques, nous distinguons deux modes de propagation différents de la population cellulaire la plus proliférante : un régime diffusif dans lequel les flux relatifs dominent l\'expansion, et un régime de propulsion dans lequel la prolifération domine et entraine des flux convectifs

    Lifetime of a structure evolving by cluster aggregation and particle loss, and application to postsynaptic scaffold domains

    No full text
    International audienceThe dynamics of several mesoscopic biological structures depend on the interplay of growth through the incorporation of components of different sizes laterally diffusing along the cell membrane, and loss by component turnover. In particular, a model of such an out-of-equilibrium dynamics has recently been proposed for postsynaptic scaffold domains, which are key structures of neuronal synapses. It is of interest to estimate the lifetime of these mesoscopic structures, especially in the context of synapses where this time is related to memory retention. The lifetime of a structure can be very long as compared to the turnover time of its components and it can be difficult to estimate it by direct numerical simulations. Here, in the context of the model proposed for postsynaptic scaffold domains, we approximate the aggregation-turnover dynamics by a shot-noise process. This enables us to analytically compute the quasistationary distribution describing the sizes of the surviving structures as well as their characteristic lifetime. We show that our analytical estimate agrees with numerical simulations of a full spatial model, in a regime of parameters where a direct assessment is computationally feasible. We then use our approach to estimate the lifetime of mesoscopic structures in parameter regimes where computer simulations would be prohibitively long. For gephyrin, the scaffolding protein specific to inhibitory synapses, we estimate a lifetime longer than several months for a scaffold domain when the single gephyrin protein turnover time is about half an hour, as experimentally measured. While our focus is on postsynaptic domains, our formalism and techniques should be applicable to other biological structures that are also formed by a balance of condensation and turnover
    corecore